A Stereospecific Synthesis of $\beta\text{-Glycosides}$ of $\underline{N}\text{-Acetylneuraminic}$ Acid and Secondary Alcohols 1)

Kaoru OKAMOTO, Tadao KONDO, ** and Toshio GOTO*

Laboratory of Organic Chemistry, Faculty of Agriculture, Nagoya

University, Chikusa-ku, Nagoya 464

†Chemical Instrument Center, Nagoya University, Chikusa-ku,

Nagoya 464

Glycosylation of secondary alcohols such as cholesterol, methyl 2,4,6-tri- \underline{O} -benzylgalactopyranoside, and 2-deoxy-2,3-dehydro-NeuAc methyl ester with a new glycosyl donor, 2β ,3 α -dibromo-2-deoxy-NeuAc methyl ester, selectively gave the corresponding β -glycosides in high yields. The 3α -bromo-glycosides were debrominated with tri- \underline{n} -butylstannane to the corresponding glycosides, which were deprotected to give the free glycosides having a β -NeuAc.

Glycosylation of N-acetylneuraminic acid (NeuAc) is one of the most important steps for the synthesis of gangliosides. The most common glycosyl donor in the glycosylation is the 2β -chloro derivative of pentaacetylneuraminic acid methyl ester, 1, first prepared by Kuhn et al.²⁾ Primary alcohols could be glycosylated with the chloroacetylneuraminic ester 1 to give a mixture of α - and β -glycosides in moderate yields accompanied by the dehydrohalogenated product, the protected 2-deoxy-2,3-dehydroneuraminic ester 2.³⁾ In the case of sugar derivatives having a hydroxy group, however, the major product was the dehydrated neuraminic ester 2 and the expected glycosylated product(s) was scarcely formed. We report here a new glycosylation method of secondary alcohols by the use of 2,3-dibromoneuraminic acid derivative 3 to produce only β -glycosylated products in high yields.

The protected 2-deoxy-2,3-dehydroneuraminic ester 2^{3}) (mp 126-127 °C) was brominated by treatment with bromine in dichloromethane or by the electrochemical oxidation of sodium bromide⁴) in acetonitrile-water (Pt-Pt electrodes) system to

1450 Chemistry Letters, 1986

give the dibromide $3^{5,6}$ (mp 156-157 °C) in 93 or 98% yield, respectively. dibromide 3 is suitable for the glycosylation with the secondary alcohols since 3-axial position of 3 was blocked by the bromo group so as to prevent the dehydrobromination reaction. 7) Glycosylation of cholesterol with the dibromide 3 (1.0 equiv.) was carried out in benzene in the presence of silver triflate (1.0 equiv.) and disodium hydrogen phosphate to give the protected 3-O-(3α -bromo- 2β -neuraminyl)cholesterol 7^{6}) (mp 224-225 °C) in 88% yield. Reduction of the bromo-glycoside 7 with tri-n-butylstannane gave in 96% yield the debrominated compound $8,^{6}$ (mp 119-120 °C) which was identical with the β -glycoside 8 prepared by glycosylation of cholesterol with the chloroneuraminic acid derivative 1 followed by separation of the produced mixture of the α - and β -glycosides. The anomeric configuration of the glycosides was deduced from the empirical rule of Paulsen et al.⁹⁾ The similar glycosylation of methyl 2,4,6-tri-O-benzyl- β -Dgalactopyranoside 11^{10}) with the dibromide 3 gave in 50% yield the protected 3-0- $(3\alpha-bromo-2\beta-neuraminyl)$ galactopyranoside 12,6) which was easily debrominated with $tri-\underline{n}$ -butylstannane to give the 3-glycoside derivative of galactose, 13,6) in 96% yield. Since the glycosylation of the galactopyranoside 11 with chloride 1 gave no glycosides, the configuration of the anomeric position of ${\bf 13}$ was deduced as β by analysis of its ¹H-NMR spectrum; the H-4 of NeuAc unit of 13 appears in 4.98 ppm and the $J_{7.8}$ coupling constant was 2.1 Hz. These values agreed with those deduced from the empirical rule. 9)

The glycosylation of the protected 2-deoxy-2,3-dehydroneuraminic ester 19^{11}) having a hydroxyl group at 8-position with the dibromide 3 gave in 58% yield only the bromo- β -glycoside 20, 6) which was debrominated with tri- \underline{n} -butylstannane to 21^6) in 95% yield. In the 1 H-NMR spectrum of 21, H-4 of the first NeuAc unit appeared at 5.09 ppm and the J_{7,8} coupling constant was 2.7 Hz, and also H-8 of the 2,3-dehydro-NeuAc unit appeared in 4.53 ppm. These data confirmed the structure of 21 as β configuration.

The protected glycosides 8, 13, and 21 were deprotected quantitatively by hydrogenolysis (10% Pd-C in MeOH) and/or hydrolysis (i, \underline{t} -BuOK in MeOH; ii, 1 mol dm⁻³ NaOH in MeOH) to give the free glycosides 10, 14, and 22, 6) respectively. The NeuAc(β 2-8)NeuAc derivative 20 still has a 2,3-unsaturated bond in the second NeuAc part, which could be converted to the corresponding tribromide 23^6) in 98% yield. Glycosylation of the glucose derivative 4 with the tribromide 23 afforded in 42% yield the NeuAc(β 2-8)NeuAc(β 2-6)Glc derivative 24, 6) which was debrominated in the same manner as above to give the corresponding trisaccharide 25 in 90% yield.

In conclusion we found that the glycosylation of the dibromide 3 with secondary alcohols gave only β -glycoside owing to steric hindrance of the axial bromo group at C-3, whereas the bromo group prevented the elimination reaction. In this procedure we could first construct the NeuAc(β 2-8)NeuAc linkage.

1451 Chemistry Letters, 1986

7: X = Br

8: X = H

10: deprotected 8

11: R-OH

12: X = Br

13: x = H

14: deprotected 13

24: X = Br

25: x = H

References

- 1) Synthetic Studies on Gangliosides 1.
- 2) R. Kuhn, P. Lutz, and D. L. MacDonald, Chem. Ber., 99, 611 (1966).
- 3) P. Meindl and H. Tuppy, Monatsh. Chem., 100, 1295 (1969).
- 4) S. Torii, K. Uneyama, H. Tanaka, T. Yamanaka, T. Yasuda, M. Ono, and Y. Kohmoto, J. Org. Chem., <u>46</u>, 3312 (1981).
- 5) The dibromide 3: MS(FAB) m/z 634 (M+H).
- 6) Satisfactory elemental analyses were obtained for these compounds. $[\alpha]_D$ and $^1\text{H-NMR}$ (NeuAc unit in chloroform- \underline{d}) data are shown below.

Com- pound	[α] _D a)	Chemical shifts, δ and c				coup.	coupling constants,				Hz in ¹ H-NMR			
		H-3eq (dd)		x H-4 (dd)		H-6 (dd)	H-7 (dd)	H-8 (ddd)	H-9 (dd)	H-9' (dd)	Me este	r NH (d)	^J 7,8	
3	-57.7°	5.05 ^b)	5.77 ^C		4.46	5.42	5.25	4.15	4.45	3.91	5.54	7.0	
5	+49.6°	4.64 ^b)	5.35 ^C	4.53	4.49	5.34	5.27	4.16	5.19	3.75	5.53	2.0	
6	+23.3°	2.47				4.27	5.38	5.27	4.13	5.07	3.72	5.49	2.2	
7	-15.0°	4.64 ^b)	5.52 ^C	4.26	4.26	5.32	5.17	4.22	4.84	3.82	5.38	2.4	
8 (-40.0°	2.52		5.25	4.09	4.11	5.38	5.06	4.15	4.88	3.80	5.52	2.0	
10 ^{e)}	-41.5°f)2.45 _{. ,}	1.57	4.02	(d)	d)	d)	d)	d)	d)			d)	
12	+34.4°	4.73 ^b)	5.05 ^C	⁾ 4.51	3.87	5.09	5.19	4.03	5.23	3.53	3.51	2.0	
13 (+ 5.3°			4.98		3.91	5.15	5.15	4.00	4.99	3.54	3.86	2.1	
14 ^{g)}	-18.3°f		1.73		(d)	d)	d)	d)	d)	d)			d)	
19	+48.1°				4.39	4.56	5.20	4.25	4.14	4.19	3.81	5.74	7.9	
20	+57.1°	4.58 ^b)	5.22 ^C	⁾ 4.62	4.56	5.29	5.33	4.07	5.05	3.80 ^h		2.3	
21 、	+31.2°			5.09	4.08		5.37	5.31	4.01	4.92	3.78 ^h	6.06	2.7	
22 g)	+42.6°i	,2.31 ,	2.15	4.05	ຸ3.90 [℃]	⁾ 4.02	3.59	3.69	3.61	3.79	1.		9.2	
24	+31.7°	4.60 ^b)	5.21 ^C	4.65	4.61	5.34	5.34	4.10	5.08	3.60 ^h		1.9	
25	- 2.0°	2.43	1.80	5.11	4.11	4.63	5.41	5.33	4.07	4.96	3.61 ^h	6.12	2.4	

- a) Measured in chloroform. b) Multiplicity: d. c) Multiplicity: dd. d) Not assigned owing to the complexity of the spectrum. e) Measured in methanol- \underline{d}_4 . f) Measured in methanol. g) Measured in D₂O (\underline{t} -BuOH=1.23 ppm). h) Assignments may be interchanged with reducing or center NeuAc unit. i) Measured in water.
- 7) Primary alcohols could be glycosylated more easily with the dibromide 3; for example, methyl 2,3,4-tri- \underline{O} -benzyl- α - \underline{D} -glucopyranoside $\mathbf{4}^{12}$) reacted with 3 to give only the β -glycoside $\mathbf{5}^{6}$) in 70% yield. Debromination of 5 with tri- \underline{n} -butylstannane afforded $\mathbf{6}^{6}$,13) in 97% yield.
- 8) The α -glycoside **9** (mp 105-106 °C), 33% yield and the β -glycoside **8**, 37% yield.
- 9) H. Paulsen and H. Tietz, Angew. Chem., Int. Ed. Engl., 21, 927 (1982).
- 10) H. M. Flowers, Carbohydr. Res., 39, 245 (1975).
- 11) The glycosyl acceptor **19** having a hydroxyl group at 8-position was prepared from 2-deoxy-2,3-dehydro-NeuAc methyl ester **15**³) in the following four steps: (i) Dowex50W-X8 and acetone at 40 °C for 5 h (8,9-O-acetonide **16**,6) mp 166-167 °C, 73% yield); (ii) Ac₂O-pyridine at 60 °C for 6 h (**17**,6) mp 77-78 °C, 98% yield); (iii) 80% AcOH at 60 °C for 1 h (8,9-diol **18**,6) 81% yield); and (iv) AcCl-pyridine at -20 °C for 0.5 h (8-ol **19**,6) 76% yield).
- 12) P. Kovac, J. Alfödi, and B. Kosik, Chem. Zveski, 28, 820 (1974).
- 13) H. Ogura, K. Furuhata, T. Osawa, S. Toyoshima, and M. Ito, Ger. Offen. DE3219209 (1982).

(Received June 6, 1986)